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Abstract

A brigade combat team must resupply forward operating bases (FOBs) within its

area of operations from a central location, mainly via ground convoy operations, in a

way that closely resembles vendor managed inventory practices. Military logisticians

routinely decide when and how much inventory to distribute to each FOB. Technol–

ogy currently exists that makes utilizing cargo unmanned aerial vehicles (CUAVs) for

resupply an attractive alternative due to the dangers of utilizing convoy operations.

However, enemy actions, austere conditions, and inclement weather pose a significant

risk to a CUAV’s ability to safely deliver supplies to a FOB. We develop a Markov

decision process model that allows for multiple supply classes to examine the military

inventory routing problem, explicitly accounting for the possible loss of CUAVs dur–

ing resupply operations. The large size of the motivating problem instance renders

exact dynamic programming techniques computationally intractable. To overcome

this challenge, we employ approximate dynamic programming (ADP) techniques to

obtain high-quality resupply policies. We employ an approximate policy iteration

algorithmic strategy that utilizes least squares temporal differencing for policy eval–

uation. We construct a representative problem instance based on an austere combat

environment in order to demonstrate the efficacy of our model formulation and so–

lution methodology. Because our ADP algorithm has many tunable features, we

perform a robust, designed computational experiment to determine the ADP policy

with the best quality of solutions. Results indicate utilizing least squares temporal

differences with a first-order basis function is insufficient to approximate the value

function when stochastic demand and penalty functions are implemented.

Keywords: approximate dyanmic programming, Markov decision process, ven–
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dor managed inventory, vehicle routing, military inventory routing (MILIRP), least

squares temporal differences
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USING APPROXIMATE DYNAMIC PROGRAMMING TO SOLVE THE

STOCHASTIC DEMAND MILITARY INVENTORY ROUTING PROBLEM

WITH DIRECT DELIVERY

I. Introduction

United States military logistical planners must consider the timing, routing, and

supply configuration of distribution assets when preparing and executing routine re–

supply missions (i.e., distribution, replenishment, or sustainment operations) in sup–

port of brigade combat team (BCT) operations. The brigade support battalion (BSB)

is the primary organization within the BCT that plans, coordinates, synchronizes,

and executes sustainment operations. Sustainment operations typically involve the

establishment of a brigade support area (BSA) as the distribution center from which

supplies of various classes are delivered to company- and platoon-sized units located

at forward operating bases (FOBs) geographically dispersed throughout the BCT’s

area of operation [10]. Logistical planners at the BSB monitor the supply levels of the

FOBs utilizing logistics situation reports and automated sustainment data-gathering

systems such as the Battle Command Sustainment Support System, and the Force

XXI Battle Command Brigade and Below logistical support system [10]. As such,

the BSB knows the inventory level at all of the FOBs when making inventory routing

decisions. At the beginning of each day the BSB must decide which FOBs to resupply,

how much of each supply class to deliver to each FOB, how to combine FOBs (i.e.,

customers) into routes, and which routes to assign to each of the available delivery

assets.

The BCT is the primary combined arms force that executes decisive actions for
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the Army. The BCT supports offensive, defensive, stability and Defense Support of

Civil Authorities tasks [10]. The BSB operations are accomplished by planning and

executing missions within the context of the sustainment warfighting function and by

applying the principles of sustainment when executing the support of decisive actions.

The objective of sustainment in a wartime environment is to provide sufficient support

to enable the BCT to conduct its four primary tasks when necessary: movement to

contact, attack, exploitation, and pursuit [10].

Distribution assets that move supplies from the BSA to the FOBs include both

ground assets (e.g., medium- and heavy-capacity cargo trucks and tanker trucks) and

aerial assets (e.g., the CH-47 Chinook helicopter). While distribution via ground asset

accounts for the majority of tonnage delivered, aerial delivery distribution provides

an effective means of conducting distribution operations because it bypasses casual–

ty-inducing enemy activities and reduces the need for route clearance of ground lines

of communications.

Aerial resupply does have its own risks that must be independently considered.

North Atlantic Treaty Organization military forces must account for adversaries with

the capability and intent to oppose and disrupt allied aerial assets [14]. Threat levels

for aerial assets are classified based on the availability, accessibility, and probabil–

ity of attack. Among the threats, man-portable air-defense systems (MANPADS)

are already highly proliferated with an estimated 500, 000 to 750, 000 licensed units

worldwide [14]. MANPADS are particularly effective against low or slow aircraft

which makes rotary wing assets particularly vulnerable during take-off and landing.

Military logistical planners face many important challenges when making daily

inventory routing decisions in a combat environment. Poorly developed transporta–

tion infrastructure, adverse weather conditions, terrain, enemy threat and actions,

and the availability of distribution assets all inhibit successful distribution of sup–
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plies from the BSA to the FOBs. Moreover, insurgent use of improvised explosive

devices (IEDs) greatly affects truck mobility throughout the operational environment

and has been successful in disrupting replenishment procedures [24]. This is con–

cerning because current resupply efforts operate mainly via convoys. The probability

of successful distribution to the FOBs must be considered before a resupply deci–

sion can be made. Logistical planners at the BSB must consider what supplies (e.g.,

water, food, fuel, ammunition) should be sent and how much is required. Limiting

factors may include distribution asset availability, convoy maintenance requirements,

and current threat locations. Constantly evolving socio-political factors may cause

a rapid change in current threat areas in the operational environment. Moreover,

wartime logistics often do not have a short-term horizon, so logisticians must plan for

sustainable resupply over an indefinite horizon.

The United States Department of Defense is interested in the design, development,

and utilization of cargo unmanned aerial systems (CUAS) for resupply operations. A

CUAS is the collection of all components required to allow the operation of a CUAV. A

CUAS includes the operating crew (maintenance crew and pilots), required software,

ground station, and the CUAVs. The United States Army intends to increase the

utilization of CUAVs as an integral component of integrated logistics aerial resupply.

As such, examination of inventory routing decisions for CUAS across an austere

combat environment is needed.

In this thesis, we consider the military inventory routing problem (MILIRP)

wherein the BSB must simultaneously decide how to route and configure CUAVs

to fulfill FOB supply needs. We develop a Markov decision process (MDP) model

of the MILIRP. The high-dimensionality of the state and action space renders clas–

sical dynamic programming methods computationally intractable. Thus, we apply

approximate dynamic programming (ADP) techniques to obtain high-quality inven–

3



tory routing policies. We construct an approximate policy iteration (API) algorithm

that utilizes least-squares temporal difference (LSTD) learning for policy evaluation.

To demonstrate the efficacy of our proposed solution methodology, we construct a

notional, representative planning scenario based on an austere combat environment

like that of Afghanistan. Because our ADP algorithm has many tunable features, we

perform a robust designed computational experiment to identify the ADP policy with

the best quality of solutions.

The unique military aspect of the MILIRP warrants further discussion. In contrast

to much of the previous work on the inventory routing problem (IRP), we explicitly

account for the possible destruction of our delivery vehicles. We must model the

evolution of threat and weather and their attendant impact on the likelihood of CUAV

delivery success. We must also model the permanent impact CUAV destruction has

on the resupply operations over an indefinitely long horizon. Moreover, in a combat

environment the military does not take into account various external costs commonly

associated with IRPs. Thus, the MILIRP objective function focuses on total amount

of supplies delivered over the life of the system and does not consider holding, ordering,

or transportation costs.

The remainder of this thesis is organized as follows. Chapter II presents a review of

relevant literature concerning vendor managed inventory practices and the inventory

routing problem. We also review several ADP papers to inform the development

of our solution methodology. Chapter III provides a description of the MILIRP

and introduces our methodology, including our MDP formulation and ADP solution

method. Chapter IV presents our computational results and analysis. We perform a

designed experiment on problem and algorithmic specific features to obtain the best

quality solution. Chapter V provides conclusions and directions for future research.

4



II. Literature Review

Our literature review focuses on two areas of research pertinent to our problem

formulation and solution methodology. The first is the inventory routing problem

(IRP) which has been widely researched. The second area of interest is approximate

dynamic programming (ADP).

2.1 Inventory Routing Problem:

The IRP is an optimization problem wherein inventory is sent from a supplier

to a customer across a set of locations. The IRP is a natural evolution from the

vehicle routing problem (VRP) and is an area of research that has been throughly

studied in the operations research field because of the constant need to improve

supply chain logistics. The IRP integrates inventory management, vehicle routing,

and delivery scheduling decisions. Inventory routing has been a topic of research in

the operational research field for over 30 years [7]. The IRP arises from the idea of

vendor managed inventory (VMI) replenishment, a centralized approach to inventory

management used to reduce overall costs.

VMI replenishment is a business practice in which the vendor monitors inventory

levels of the customers. Conversely, in traditional inventory management, customers

keep track of their own inventory and determine when and how much to order from

the supplier; The vendor (i.e., supplier) receives orders and uses its vehicles to fill

the demand. VMI replenishment is an attractive alternative because it is a mutually

beneficial relationship between the supplier and the customer; the supplier reduces

transportation costs by deciding when and how much inventory to distribute to each

customer and the customer reduces costs by not allocating resources to monitoring
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inventory scheduling. There are three main advantages to utilizing VMI practices [15]. 

First, VMI may lead to reduced production and inventory costs by reducing variation 

in orders and obtaining a more uniform utilization of resources for both the supplier 

and the customer. Second, proactive rather than reactive planning used in VMI may 

reduce transportation costs beyond that of more uniform utilization alone. It may 

be possible to increase low-cost full truckload shipments and decrease the frequency 

of high-cost less than full truckload shipments. Moreover, it may be possible to use 

more efficient routes by coordination of replenishment at different customers close to 

each other. Third, VMI may increase service levels, measured in terms of reliability 

of product availability.

There are two requirements necessary to obtain the benefits of VMI: the avail–

ability of relevant, accurate, and timely data for the decision maker and the ability 

of the central decision maker to use increased amount of information to make good 

decisions [15]. To succeed in VMI, an organization must not only have access to rele–

vant information such as current and past inventory levels at all customers, customer 

demand behavior, and customer location relative to vendor and each other, but they 

must also have the ability to utilize that data in the construction of relevant and use–

ful distribution policies. This is a very complex task and many failures to implement 

VMI are a direct result of failing to meet one or both of the above requirements [15]. 

While a responsible vendor implementing VMI can save both time and money, misuse 

of VMI business practices can result in lost sales and revenue. Understanding of VMI 

practices builds the knowledge base necessary to understand the IRP.

The IRP falls into a class of problems called NP-hard, meaning they are at least 

as hard as the hardest non-deterministic polynomial-time problems [17]. The IRP 

is inherently difficult because it subsumes the classical VRP. A supplier must make 

three simultaneous decisions [7]: 1) when to serve a given customer, 2) how much
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to deliver to this customer when it is served, and 3) how to combine customers into

vehicle routes. A basic IRP seeks to minimize total inventory-distribution costs while

meeting demand of each customer subject to the following constraints: inventory

at each customer can never exceed its maximum capacity, inventory levels are not

allowed to be negative, the supplier’s vehicles can perform at most one route per time

period with each route starting and ending at the supplier, and vehicle capacities

cannot be exceeded.

Common problem features that describe IRPs include [7]: time horizon, structure,

routing, inventory policy, inventory decisions, fleet composition, and fleet size. Within

the IRP framework, time horizon is a problem dependent feature that can either be

finite or infinite. With respect to structure, the number of suppliers and customers

can be categorized as follows: one-to-one when there is only one supplier and one

customer, one-to-many when there are many customers, or more rarely, many-to-

many. Routing can be direct when there is only one customer per route, multiple

when there are several customers in the same route, or continuous when there is no

central depot (e.g., as seen in maritime applications). Direct delivery greatly simplifies

the IRP by removing the optimization of the routing portion of the problem. Direct

delivery involves the vehicle moving directly from the supplier to the customer and

returning to the vendor immediately after delivery. Direct delivery is appropriate

for our application of the MILIRP due to the current CUAV maximum loaded range

of under 400km [18]. The two most common inventory polices are the maximum

level and order-up-to level (OL) policies. Maximum level policies allow flexibility in

deciding the amount to refill whereas in OL policies, the supplier always replenishes

a customer to full capacity each time the customer is visited. Inventory decisions

can include lost sales when excess demand becomes lost revenue, or back-orders when

demand can be filled at a later date. Fleet composition can either be homogeneous

7



or heterogeneous while fleet size can be single, limited, or unconstrained.

Coelho et al. [7] and Toth & Vigo [29] give a basic introduction to the stochastic

variant of the basic IRP. In the stochastic inventory routing problem (SIRP), the sup–

plier knows the customer demand only in a probabilistic sense. Demand stochasticity

means shortages may occur. In order to discourage shortages, a penalty function is

imposed whenever a customer runs out of stock and is usually modeled as unsatis–

fied demand. With no backlogging, unsatisfied demand is considered lost. There are

several methods employed to solve IRP which include but are not limited to heuristic

algorithms, link optimization, simulation, and dynamic programming. See Table 1

for a summary of relevant papers on the SIRP.

Campbell et al. [6] and Minkoff [22] formulate their SIRP in a similar fashion.

They both model the use of an unconstrained fleet (in terms of size) to meet demand

across their network, additionally allowing for multiple routing. While Campbell

et al. [6] did not present specific analysis for their SIRP formulation, they provided

challenging test instances of the IRP. Minkoff [22] applied a heuristic approach to

solving the SIRP based on a decomposition of the problem by customer. The solution

to the customer subproblems generated the penalty functions applied to their master

dispatching problem.

Adelman [1] and Kleywegt et al. [16] provide very similar SIRP formulations.

They both solve infinite horizon problems with a one-to-many structure. While their

solution methodologies differ, they both focused on multiple routing and maximum

level inventory policies. They both employ homogeneous fleet composition without

backlogging and with a fixed, limited fleet. Adelman [1] differs from Kleywegt et al.

[16] in that he uses linear programming techniques to obtain his solution whereas

Kleywegt et al. [16] use ADP.

Two papers deserve more in-depth discussion because they both greatly informed
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our research, and closely resemble our work in both problem formulation and solution

methodology.

Kleywegt et al. [15] model their IRP as a direct delivery, limited fleet application

with stochastic demand and an unrestricted vehicle supply. Similarly, Kleywegt et al.

[16] model their IRP with multiple routing, limited fleet with stochastic demand, and

deterministic vehicle supply. Our formulation is similar to both of these models in

that we use infinite time horizon, one-to-many structure, maximum level inventory

policy, no backlogging, and a homogeneous fleet composition. While we are similiar

to Kleywegt et al. [15] in that we employ direct delivery, we are more similar to

Kleywegt et al. [16] in that our fleet size is constrained. Our formulation differs from

either paper in that the distinct military nature of our formulation yields a stochastic

vehicle supply. The stochastic nature of our vehicle supply is discussed in more detail

in Section 3.1.

Kleywegt et al. [15] and Kleywegt et al. [16] both employ ADP as a solution tech–

nique. Kleywegt et al. [15] employ an approximate policy iteration (API) algorithmic

strategy utilizing a parametric value function approximation. They construct a set

of basis functions to create a linear architecture around the pre-decision state. Kley–

wegt et al. [16] adopt the same ADP approach for the first part of their optimization

problem, before considering multiple delivery, then use a heuristic search method to

determine additional delivery opportunities afterwards, if possible. Several differences

exist that distinguish our problem from theirs. First, we focus our value function ap–

proximation around the post-decision state. Second, the stochastic nature of vehicle

supply is a distinguishing feature unlike other IRP in the current literature.
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Table 1. Classification of Relevant Stochastic IRP Papers

Reference Routing Fleet Size
Adelman [1] Multiple Multiple
Berman & Larson [2] Multiple Single
Campbell et al. [6] Multiple Unconstrained
Kleywegt et al. [15] Direct Unconstrained
Kleywegt et al. [16] Multiple Multiple
Minkoff [22] Multiple Unconstrained

2.2 Approximate Dynamic Programming

Inventory routing decisions in a combat environment involves sequential decision

making under uncertain conditions. Due to enemy threats, the routing of a cargo

unmanned aerial vehicle (CUAV) to replenish supplies has an uncertain outcome.

The loss of a CUAV impacts the ability of the Brigade Supply Battalion (BSBs) to

replenish supplies in the future. Thus, we must account for the safety of our CUAV

in our formulation. We formulate the military inventory routing problem (MILIRP)

as a Markov decision process (MDP). However, due to the high dimensionality of this

problem, it is unable to be solved exactly using dynamic programming techniques. To

overcome the curse of dimensionality, we implement an ADP methodology to solve the

MILIRP. ADP is being concurrently developed by multiple different communities to

include engineering controls, computer science (artificial intelligence), and operations

research. For a more detailed introduction to ADP from an operations research

perspective we refer the reader to Powell [25, 26, 27]. For a different ADP outlook,

we refer the reader to Bertsekas & Tsitsiklis [4] (engineering control theory) or Sutton

& Barto [28] (artificial intelligence).

Two ADP algorithmic strategies exist for obtaining approximate solutions to our

stochastic optimization problem: approximate value iteration (AVI) and API. Al–

though we will not spend time introducing API here, the interested reader may read

Bertsekas [3] for a more detailed discussion. We chose API as our algorithmic strat–
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egy to obtain our mapping of a state to an action where our state includes inventory

levels and our actions include when and how much inventory to send to each location.

In general, there exists four classes of policies: myopic cost function approximation,

lookahead policies, policy function approximations, and value function approxima–

tion policies [26]. Our approximation strategy involves using the post-decision state

to construct a linear architecture based on an appropriate set of basis functions.

Van Roy et al. [30] was the first to introduce post-decision state approximation as a

way to modify Bellman’s equation to obtain an equivalent, deterministic expression.

Using the post-decision state is useful because it reduces what Powell [26] refers to

as the the outcome state portion of the curse of dimensionality. API consists of two

basic steps: policy improvement and policy evaluation. Within the policy improve–

ment step of our API algorithm, we update the value function approximation for a

fixed policy using least squares temporal differencing (LSTD). Bradtke & Barto [5]

introduced LSTD as a computationally efficient method for estimating the adjustable

parameters when using a linear architecture with fixed basis functions to approximate

the value function for a fixed policy. LSTD updates its estimate of the expected con–

tribution and projects this over the infinite horizon [26]. We implement a variant of

the LSTD algorithm that utilizes post-decision state value function approximations.
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III. Methodology

This section describes the Markov decision process (MDP) model formulation

of the military inventory routing problem (MILIRP) with direct delivery. We also

present the approximate dynamic programming (ADP) methodology utilized to ob–

tain high quality solutions to the MILIRP.

3.1 Problem Description

A brief discussion of the U.S. Army replenishment structure provides context for

the MILIRP. The brigade combat team (BCT) is the highest echelon organization

able to act independently in regional combat operations. The BCT is responsible for

the forward operating bases (FOBs) within its area of operation. A sub-organization

within the BCT, called a brigade support battalion (BSB), is responsible for the

replenishment of the FOBs. The interaction between the BSB and the FOBs parallel

the supplier-to-customer relationship seen in vendor managed inventory practices.

The BSB plans, coordinates, synchronizes, and executes replenishment operations

in support of brigade combat teams operations [11]. The BSB is the organization

within the BCT that establishes and operates the brigade support area (BSA), a

central location utilized to resupply its customers (i.e., FOBs) at locations of varying

distances. The BSB is responsible for the periodic resupply of the BCT’s subordinate

units, which closely mirrors vendor managed inventory (VMI) practices used in the

private sector. To accomplish its resupply missions, the BSB is kept informed of

inventory levels at the FOBs through regular reporting and automated data systems.

VMI practices allow the BSB to decide when, where, and how much supplies to send

to FOBs. The routing and resupply operations of the BSB can be formulated as a

variant of the inventory routing problem (IRP).
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Table 2. U.S. Army supply classes (*denotes classes delivered by the BSB in combat)

U.S. Army Supply Classes

I. *Subsistence
II. *Clothing, individual equipment
III. *Fuels, lubricants/fluids
IV. *Construction materials
V. *Ammunition
VI. Personal demand items
VII. *Major end items (tanks, vehicles etc.)
VIII. *Medical supplies
IX. *Repair parts
X. Non-military programs material

Our formulation of the MILIRP includes multiple supply classes to improve model

realism, as compared to previous efforts (e.g. McCormack [19], McKenna [21], McKenna

et al. [20]). Thus, the Army’s definition of supply classes deserves more attention.

The U.S. Army defines ten different supply classes as indicated in Table 2 [8].

In a combat environment, however, the BSB cannot provide all ten classes; the

BSB is restricted to only provide classes I, II, III, IV, V, VII, VIII, and IX to a

FOB [10]. Replenishment during combat operations includes difficult, deliberate,

and time-sensitive resupply missions conducted to provide forward companies with

essential supplies to sustain the pace of operations [11]. The U.S. Army employs

trucks, manned air assets, and now cargo unmanned aerial vehicles (CUAVs) to per–

form replenishment (i.e., distribution) operations. Utilization of these distribution

assets requires deliberate logistical planning.

Similar to the number of drivers available to operate a fleet of trucks, the cargo

unmanned aerial system (CUAS) has additional limiting factors that must be con–

sidered. The CUAS is a complex system because of the many factors required for

successful operation: remote pilot (for emergency or combat purposes), maintenance

requirements, maintenance crew, aircraft fuel, required software, and the CUAVs. In

this thesis, we consider two features of the CUAS, the number of CUAVs and the size
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of the crew. We refer to crew as all other factors required for CUAS operation other

than the CUAVs themselves.

One important complicating feature of the MILIRP that has yet to be discussed

is vehicle destruction. Resupply efforts pose a substantial risk to personnel in combat

environments due to the harsh and rugged environments in which the Army typically

operates. The CUAV is most vulnerable to man-portable air-defense systems (MAN–

PADS) and small arms fire during takeoff and landing operations at FOBs. As such,

successful delivery of supplies is not guaranteed when the BSB makes a CUAV resup–

ply routing decision. For this reason, the MILIRP necessarily takes into account the

stochasticity of routing decisions. Moreover, CUAV routing decisions are influenced

by the current threat conditions because a destroyed CUAV cannot be replaced; the

loss of a CUAV has a permanent impact on the ability of the BSB to deliver supplies

in the future. We assume no CUAV replacement because of the logistical cost required

to replace a CUAV. Each BCT deploys with its own organic CUAS contingent. Once

lost, the CUAV is not replaced until the next BCT arrives in theater.

Lack of transportation infrastructure within the BCT’s area of operations and

enemy aggression make resupply via ground transport inherently dangerous. Impro–

vised explosive devices caused 18% of all deployed fatalities between November 2002

and March 2009, all occurring during sustainment operations [12]. If CUAV resup–

ply is unable to meet supply requirements, FOBs must be supplied through ground

convoy operations. Due to the human capital exposure to risk necessary to resupply

FOBs via ground convoy, we impose a penalty on the system if the CUAS is unable

to fulfill FOB supply requirements.
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3.2 MDP Formulation

The objective of the MILIRP is to determine the optimal resupply of forward

operating bases (FOBs) via inventory routing and cargo configuration decisions in

order to maximize expected total discounted reward over an infinite horizon. The

reward function maintains increasing monotonicity with respect to supplies delivered

to FOBs until it reaches the FOB’s maximum holding capacity after which additional

supplies delivered yield no reward. We assume all inventory levels at each FOB are

known at the start of each period and that demand for each supply class has a known

historical average with some variability modeled as an independent and identically

distributed error term. Inherent in this formulation is the assumption that no other

external event (e.g., enemy action, fire, expiration of supplies) other than demand

causes a loss of inventory.

In the MILIRP, a brigade combat team (BCT) is responsible for B FOBs within

its area of operation. The BCT contains a brigade support battalion (BSB) which

manages resupply efforts for N supply classes for each FOB. The BSB distributes

supplies to the B FOBs utilizing U identical cargo unmanned aerial vehicles (CUAVs).

Each CUAV has an identical load capacity of H tons. FOB i = 1, 2, ..., B requires D̂in

tons of supplies per time period for supply class n = 1, 2, ..., N , a stochastic demand

with a mean demand d̄in and an independent and identically distributed exogenous

error term ε̂in. Each FOB also has a finite maximum holding quantity Qin for each

supply class. A total of M threat maps captures the threat conditions in the BCT’s

area of operation.

Given an austere combat environment, there is potential for delivery failure due

to extrinsic uncontrollable factors (e.g., enemy action, mechanical failure, extreme

weather conditions). We propose a tessellation of the area of operations with each

hexagonal cell identified as a high or low threat area as done in other work [19].
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The probability of a CUAV being destroyed depends on the FOB being supplied

and the current threat conditions. The set of M threat maps models the periodic

changes in risk throughout the area of operation. Dijkstra’s algorithm is applied to

determine an optimal path that minimizes risk when traveling from the BSB to each

FOB i = 1, 2, ..., B for each tessellated threat map m = 1, 2, ...,M . Under threat map

m, the parameter ψim denotes the probability of a one-way successful trip to FOB i

(and back again). A CUAV may be destroyed either on its way to a FOB or after

delivering supplies on the return route back to the depot at the brigade support area

(BSA).

We proceed by describing the MDP model formulation of the MILIRP. With

respect to a conventional inventory routing formulation, CUAVs are vehicles, FOBs

are customers, and the centralized BSB is the supplier. Table 3 located at the end of

this chapter provides a summary of notation.

The MILIRP is formulated as an infinite time horizon problem where t ∈ T =

{1, 2, ...}. During each time period a CUAV is fueled, supplied, maintained, travels

to the assigned FOB, unloads, and returns to the BSB. It is assumed that all FOBs

are within the CUAV’s range when fully loaded and that this route is serviceable in

one time period. Current CUAV limitations validate this assumption [18].

The state space includes three components: the inventory level at each FOB,

the number of operational CUAVs, and the threat map index number. The in–

ventory at each FOB is defined as Rt = (Rti)i∈B ≡ (Rt1, Rt2, ...RtB), where Rti =

(Rtin)n∈N ≡ (Rti1, Rti2, ..., RtiN). We define B = {1, 2, ..., B} as the set of all FOBs,

N = {1, 2, ..., N} as the set of all supply classes, and Rtin ∈ (0, rin] as the number of

tons of supplies for each supply class in N and at each FOB in B at time t. Moreover,

rin is the inventory capacity of each supply class n ∈ N at each FOB i ∈ B. In the

remainder of this thesis, we assume a single aggregate supply class (i.e., N = 1) and
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therefore drop the supply class dimension for the state space. This simplification of

the MILIRP will be addressed in subsequent research efforts. The number of oper–

ational CUAVs able to perform resupply operations at time t is defined as vt. The

threat map index number at time t is defined as M̂t ∈ {1, 2, ...,M} where M is the

number of threat maps utilized to model the security in the BCT’s area of operation.

The threat map impacts the flight risk associated with successfully completing sorties

between FOBs and the brigade support area (BSA). This threat information, M̂t is

available at time t. The threat information for time t+ 1, M̂t+1, is conditioned on M̂t

and is unknown at time t. Utilizing these components, we define St =
(
Rt, vt, M̂t

)
∈ S

as the state of the system at time t, where S is the set of all possible states.

We let X (St) be the set of all feasible actions when the system is in state St.

Let xt = (xt11, xt12, ..., xt1vt , xt21, xt22, ..., xtij, ..., xtBvt) ∈ X (St) denote an inventory

routing decision, where xtij ∈ {0, 1} is 1 if CUAV j is to resupply FOB i at time

t and 0 otherwise. There are four restrictions placed on CUAV routing in a time

period: first, the number of CUAVs deployed cannot exceed the number of operational

CUAVs, vt; second, the total number of CUAVs deployed cannot exceed the number

of crews available K; third, a CUAV cannot deliver more than its maximum capacity,

H; fourth, a CUAV can only deliver to one FOB per time period. Finally, our policy

(i.e., decision function) is defined in Equation 1.

X (St) 3 xt = Xπ(St) (1)

Transition probabilities are defined for each dimension of our state space to include

inventory levels at FOBs, current CUAV count, and threat map condition. Inventory

transitions are based on routing decisions each time period, xt, and the current state

of the system St. When CUAVs are routed to FOBs there are three possible outcomes

governed by a trinomial distribution: first, a CUAV may successfully travel to and
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from a FOB; second, a CUAV may successfully deliver supplies and be destroyed

upon the return to the BSB; third, a CUAV may be destroyed before successfully

delivering the routed supplies. Let ψ2
im, ψim(1 − ψim), and (1 − ψim) denote the

probabilities of a successful two-way delivery (SS), successful one-way delivery (SF),

and failure (F) for a single CUAV routed to resupply FOB i during threat condition

map m. Since we are interested in a particular outcome of a routing decision, we

proceed by defining the binomial marginal distributions for each outcome type (i.e.,

SS, SF, F). With the assumption that each outcome of a resupply mission to a FOB

is independent of other missions and defining xtij as the decision to route CUAV j to

FOB i with any supply load, we let ẐSS
t+1,i(ψ

2
im,

vt∑
j=1

xtij) denote the binomial random

variable with parameters ψ2
im and

vt∑
v=1

xtiv governing the number of two-way successful

deliveries of CUAVs routed to FOB i during time interval [t, t + 1), on map m. Let

ẐSF
t+1,i(ψim(1 − ψim),

vt∑
v=1

xtiv), and ẐF
t+1,i((1 − ψim),

vt∑
v=1

xtiv) be similarly defined. For

simplicity, we refer to the quantity as:

Ẑt+1 =
(
(ẐSS

t+1,i)i∈B, (Ẑ
SF
t+1,i)i∈B, (Ẑ

F
t+1,i)i∈B

)
. (2)

Inventory levels at each FOB are limited by the maximum holding quantity Qin.

Moreover, if the FOB supply level falls below a certain threshold the FOB is imme–

diately resupplied via ground convoy. Although we model this threshold as zero we

note that falling to zero may represent falling to a preallocated safety stock at which

the convoy is required for resupply. Equation 3 is the inventory transition function

for FOB i.

Rt+1,i =


ri if Rti +H(ẐSS

t+1,i + ẐSF
t+1,i)− D̂t+1,i ≤ 0,

min
(
Rti +H(ẐSS

t+1,i + ẐSF
t+1,i)− D̂t+1,i, ri

)
otherwise.

(3)
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In the first case, convoy resupply is necessary so the FOB is resupplied to capacity. In

the second case, the FOB supply changes according to supplies received and realized

demand. The minimization in the second case enforces the FOB capacity constraint.

CUAV transition is contingent on the probability of two-way successful delivery

between the BSA and the FOB. The number of available vehicles is the minimum

of CUAVs at time t, vt, and the number of crews K. Thus, the number of CUAVs

transition according to Equation 4.

vt+1 = vt −
B∑
i=1

(ẐSF
t+1,i + ẐF

t+1,i) (4)

The map transition functions is a representation of the uncontrolled stochastic

aspect of the combat environment. The set of all maps captures the threat level of

the operational environment via the tessellation of a geographic region. Each region

within the threat map represents either a high or low threat level; maps are classified

as either high or low threat maps depending on the number of high threat conditions

associated with each map. Larger numbers of high threat condition cells help capture

the increased risk of sending a CUAV to a particular FOB. Different CUAV routes

are applied for each threat map; recall we apply Dijkstra’s algorithm to each FOB for

each map prior to solving the MDP. This allows us to know the best route with the

highest one-way probability of survival depending on the location of the BSA, FOB,

and the high threat regions. The map transitions are representative of the changing

environment; for relatively static combat conditions, the map transition probability

would be relatively low. More dynamic combat environments yield a relatively higher

map transition probability. The BCT intelligence teams gather information on threat

conditions and may label the tessellated region based on information such as enemy

action, season, historical trends, and weather.

The contribution function is defined by the total amount of supplies delivered to
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FOBs during each time period. The amount of supplies delivered is bounded by the

maximum inventory quantity at each FOB, constraining any excess supplies delivered

from affecting the system behavior. An immediate penalty is applied when stock out

occurs due to the human risk associated with convoy resupply. Letting τi be the

stock out penalty for FOB i allows us to apply different penalties that can capture

the difficulty of resupplying a particular FOB via convoy; FOBs with higher penalty

would receive more weight when routing decisions are considered. We present our

contribution function in Equation 5

C(St, xt) = E
{[ B∑

i=1

min
(
ri−Rti+D̂t+1,i, H(ẐSS

t+1,i+Ẑ
SF
t+1,i)

)
,−

B∑
i=1

τiI{i}

]∣∣∣St, xt} (5)

where I{i} is 1 when the system is in a state of depleted supply (i.e., Rti +H(ẐSS
t+1,i +

ẐSF
t+1,i) − D̂t+1,i ≤ 0) and 0 otherwise. This applies a penalty for risking lives for

resupply via ground convoy. The amount of rewardable supplies is determined by

the minimum of available capacity at FOB i and the number of supplies successfully

delivered to FOB i.

The objective of this MDP is to maximize the expected total discounted value over

an infinite horizon. By definition the transitions are Markovian, thus all decisions

made at time t depend only on the current state of the system. To obtain the policy

that maximizes the expected total discounted reward, Bellman’s optimality equation

is used:

Vt(St) = max
x∈X (St)

(
C(St, x) + λE{Vt+1(St+1)|St, x}

)
. (6)

The value of being in state St results from choosing the action that maximizes the

sum of the immediate expected contribution and the discounted expected total value
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of the state of the system at time t+1. Using this MDP formulation, an approximate

dynamic programming algorithm is developed to obtain policies for resupplying FOBs

via CUAVs.

3.3 ADP Formulation

We implement an approximate policy iteration (API) algorithmic strategy using

least squares temporal differences (LSTD). API mirrors the exact policy iteration

algorithm closely. Instead of using the one-step transition matrix that is difficult

to utilize for problem instances with high dimensionality, our API implementation

approximates and updates the value function. We use the post-decision state which is

the state of the system immediately after a decision is made but before the exogenous

information processes are realized. This convention allows the expectation to be

moved outside the maximization operator, altering our value function to the form of

V x
t (Sxt ) = E

{
max

x∈X (St+1)

(
C(St+1, x) + λV x

t+1(Sxt+1)
)
|Sxt
}
. (7)

LSTD utilizes a set of basis functions that captures relevant information in the sys–

tem, thus reducing the dimensionality of the state space and providing an adequate

solution [26]. Letting (φf (s))f∈F be a basis function where F is a set of features, the

value function approximation is given by: V̄ x(Sxt |θ) =
∑
f∈F

θfφf (S
x
t ) wherein (θf )f∈F

is a vector of weights with one coefficient for each basis function. Because we choose

the number of features to be less than the dimensionality of the state space, it is com–

putationally efficient to estimate the value function using basis functions. Although

classical linear regression methods can be used to estimate θ, choosing an appropriate

set of basis functions can be challenging. LSTD updates θ iteratively throughout the

algorithm.
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Algorithm 1 Approximate Policy Iteration Using Least Square Temporal Differences

Step 0. Initilize θ0

Step 1. For a=1 to A (Policy Improvement Loop)
Step 2. For q=1 to Q (Policy Evaluation Loop)

a. Generate a random post-decision state, Sxt−1,q

b. Record φ(Sxt−1,q)
c. Simulate transition to next event, obtain a pre-decision state, St,q
d. Determine decision xt = Xπ(St,q|θa−1)
e. Record contribution C(St,q, xt)
f. Record basis function evaluation φ(Sxt,q)
End

Step 3. Compute θa using smoothing rule
End

LSTD iteratively updates the discounted total value function approximation for

a fixed policy and projects it over an infinite horizon. LSTD derives its name from

comparing the differences between the current value of being in a state with the up–

dated value of being in a state at the following iteration. Alternatively, this can be

viewed as a batch algorithm that operates by collecting samples of temporal differ–

ences and then using least squares regression to find the best linear fit [26]. LSTD

performs least squares regression so that the sum of the temporal differences over the

simulation is equal to zero. The LSTD pseudo code is summarized in Algorithm 1.

Φt−1 ,


φ(Sxt−1,1)>

...

φ(Sxt−1,Q)>

 ,Φt ,


φ(Sxt,1)>

...

φ(Sxt,Q)>

 , Ct ,

C(St,1, xt)

...

C(St,Q, xt)

 (8)

A total of Q temporal difference sample realizations are collected in each policy

evaluation loop where the qth temporal difference is denoted C(St,q, X
π(St,q|θ)) +

γθ>φ(Sxt,q)−θ>φ(Sxt−1,q). Let Φt−1 and Φt consist of rows of basis function evaluations

of the sampled post-decision states and Ct as the contribution vector for the sampled

states as indicated in Equation 8. The sample realization θ̂ is an estimation of θ and

is defined in Equation 9.

22



θ̂ =
[
(Φt−1 − γΦt)

>(Φt−1 − γΦt)
]−1

(Φt−1 − γΦt)
>Ct (9)

For comparison, we use both LSTD and instrumental variables (IV) LSTD. Instru–

mental variables as introduced by Bradtke & Barto [5], are correlated with regressors,

but uncorrelated with the errors in the regressors and the observations. An instru–

mental variables method makes it possible to generate consistent estimators of the

θ-vector. The application of IV to obtain θ̂ is shown below.

θ̂ =
[
(Φ>t−1)(Φt−1 − γΦt)

]−1

(Φ>t−1Ct) (10)

We then apply a harmonic stepsize rule to smooth in the new observation θ̂ with

the previous estimate θ during implementation. The stepsize rule αa is a function of

the outer loop iteration count and is defined below.

αa =
1

a
(11)

The stepsize rule αa greatly influences the rate at which the API algorithm con–

verges thus impacting the attendant solutions. Utilizing the harmonic stepsize rule,

we update our θ in the following way:

θ ← θ(1− αa) + θ̂(αa). (12)

Equation 12 shows that the updated θ is weighted most heavily by our current

estimate of θ and then moved toward our new estimate, θ̂, by an incremental amount

proportional to αa. Initially, greater emphasis is placed on θ̂, but as the number of

iterations increases the incremental effect of θ̂ is lessened. Moreover, as the number

of iterations increases, any singe θ̂ has less influence than the estimate based on

information from the first a− 1 iterations.
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Upon obtaining an updated parameter vector θ, we have completed one policy

improvement iteration of the algorithm. The parameters A and Q are tunable, where

A is the number of policy improvement iterations completed and Q is the number of

policy evaluation iterations completed.
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Table 3. Table of Notation

A - Number of outer loops
B - Number of FOBs
C - Contribution function
Ct - Contribution vector for sampled states

D̂ - Total daily FOB demand
d̄ - Mean FOB demand
H - CUAV carrying (holding) capacity
I - Indicator variable for stockout penalty
K - Number of crews
M - Number of threat maps
N - Number of supply classes
Q - Number of inner loops
r - Maximum FOB quantity
R - Inventory at FOB
S - State of the system
t - Time epoch
U - Initial number of CUAVs (unmanned)
V - Total expected value
vt - Number of CUAVs available at time t
Xπ - Policy function
x - Action, sending a CUAV a FOB

Ẑ - CUAV delivery outcome
B - Set of all FOBs
F - Set of basis functions
N - Set of supply classes
S - State space
T - Set of time epochs
X - Action space
γ - Algorithmic discount factor
ε̂ - FOB demand error term
θ - Vector of weights

θ̂ - Vector of sample realized weights
λ - Time discount factor
π - Policy
τ - Stock out penalty
Φ - Matrix of fixed basis functions
φ - basis function
ψ - One-way probability of CUAV success
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IV. Analysis

Utilizing the Markov decision process (MDP) formulation discussed in chapter III,

we can find a policy for a 9-forward operating base (FOB) problem instance. As a

baseline, basis functions for the approximate dynamic programming (ADP) algorithm

are explored to find the ADP’s optimal parameters. Finally, we run an experimental

design to find the algorithmic and model parameters that yield the best results for

our ADP algorithm.

4.1 MDP Parameterization

The military inventory routing problem (MILIRP) is formulated as an infinite

horizon MDP where days are divided into four epochs of equal time. We assume

that during each epoch the cargo unmanned aerial vehicle (CUAV) can complete

all mission preparation tasks and perform the assigned mission. For this thesis, we

assume an aggregate supply class and stochastic demand. While supply consumption

is continuous, supply delivery is integer because a CUAV always delivers its maximum

capacity, and clearly only an integer number of CUAVs may be sent.

For our problem instance we chose a 9-FOB design to represent an average sized

battalion. We chose 9 because there are three platoons in a company and three

companies in an battalion. A platoon will typically man a FOB within the battalion’s

area of responsibility. We test our ADP at a battalion’s average operating conditions.

Each FOB has a consumption rate and storage capacity based on the number of

personnel on site. Based on a General Dynamics report [12], the expected daily con–

sumption requirements of a platoon is 7, 482 pounds. We round up as a conservative

estimate to 8,000 pound daily average consumption per FOB. With four epochs in

one day, about one ton of supplies per period is required for sustainment. For our
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testing, we model the stochastic demand using this known historical average d̄ and

an independent and identically distributed error term, ε̂, normally distributed with

a mean of 0 and standard deviation of 0.5. We also make the conservative assump–

tion that a FOB has a maximum holding capacity of three times the daily average

requirement totaling 12 tons. We assume that there are no logistical failures limiting

the amount of supplies available at the centralized brigade support battalion (BSB).

This assumption is reasonable since the BSB is supplied via fixed wing aircraft from

outside the theater of operations.

Although technology is quickly progressing, Lockheed Martin’s K-MAX has deliv–

ered two tons at 15, 000 feet above ground level (AGL) with more tonnage delivered

at lower altitudes [18]. Thus, we chose a conservative two ton carrying capacity for

CUAV resupply for our 9-FOB design. We also chose the number of CUAVs and

crews to be four and two respectively which mirrors the tactical unmanned aircraft

system (TUAS) platoon [9]. As the requirements for CUAV resupply increase, we

expect to see the number of CUAVs and crews the BSB utilizes to increase. As such,

we parameterize the CUAVs and crews as multiples of TUAS platoon ratios. For

example, if three TUAS platoons are deployed at the BSB, the number of CUAVs

would be 12 and the number of crews 6.

We define ψim as the probability a CUAV will successfully travel to and from FOB

i on map m. An intelligence team would ideally assign risk values to each zone in the

tessellated region. This number would account for threats to include but not limited

to: weather, enemy action, and mechanical breakdown. Transition between maps

can be created by observed trends specific to the region of interest. These problems

influence threat levels which might include time of the year. Thus, the optimal path

can be found that minimizes the risk to the aircraft while in transit via a shortest

path algorithm. For our example, we chose to use M = 2 threat maps. In the absence
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of an intelligence team and a specific pattern of enemy activity, we use 0.40 as the

probability of staying on any given threat map.

When a FOB’s supply level falls below a predetermined minimum threshold, the

FOB is immediately resupplied via ground convoy to full capacity. When a convoy

is sent, a penalty is applied proportional to how far below the threshold the FOBs

supplies falls. The penalty represents the increased human capital risk inherent in

ground convoy operations along with the risk of the FOBs. The penalty associated

with resupplying a specific FOB would ideally be supplied by a subject matter expert

who knows the terrain and enemy activity levels associated with each FOB. For

example, FOBs further away across rough terrain would have a higher penalty than

a closer and more readily accessible FOB. This penalty creates a strong incentive to

ensure FOBs are resupplied by CUAV when possible.

We chose λ = 0.98 to be a discount factor that balances future needs with current

needs. We utilized the above described MDP parameterization to create both myopic

and ADP policies for comparison.

4.2 Myopic Policy

The myopic policy ignores the future needs of the system and chooses actions

based on current needs in the system. This is accomplished by setting λ = 0 which

means there is no value from the future outcome of the current decision. We use the

myopic policy as a benchmark policy to compare our ADP’s algorithmic performance.

Because of the size of our problem, there is no optimal value function to compare our

ADP solution. Thus, the myopic policy serves as a stable benchmark to compare the

ADP value.
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4.3 ADP Policy

The ADP policy is obtained from our approximate policy iteration algorithm using

least squares temporal differences (API-LSTD). We compare API-LSTD to approx–

imate policy iteration with instrumental variables (IV) bellman error minimization

(IVAPI) algorithm. The challenge with both these algorithms is developing basis

functions that accurately approximate the unknown optimal value function. The

API algorithms are employed with the system initialized at full capacity for each

FOB.

To solve the approximate dynamic program (ADP), we need to solve the inner

maximization problem. The inner maximization problem can be solved exactly using

complete enumeration for smaller problem instances. However, for the size of our

problem instance, this is intractable. We chose to formulate the inner maximization

problem as an integer program (IP) because only an integer number of CUAVs can

be sent for resupply. We define our IP as follows:

Decision Variables:

xij, binary. 1 when CUAV j sent to resupply FOB i, 0 otherwise.

yi, slack variable at FOB i corresponding to the amount below stock-out.

Parameters:

θij, coefficient value corresponding to action taken at FOB i.

θ0, coefficient value corresponding to the number of CUAVs available.

τi, penalty associated with stock-out at FOB i.

H, CUAV holding capacity.

K, number of crews available.
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vt, number of CUAVs available at time t.

λ, time discount factor.

IP:
vt∑
j=1

B∑
i=1

xij(ψiH + λ(θij − θ0))− τiyi (13)

st:
vt∑
j=1

B∑
i=1

xij ≤ min (K, vt) (14)

ψiH

vt∑
j=1

xij +Ri − d̄i ≤ ri, ∀i ∈ B (15)

Ri + ψiH
vt∑
j=1

xij − d̄i + yi ≥ 0, ∀i ∈ B (16)

xij ∈ {0, 1} (17)

The objective function balances current rewards, future expected rewards, and

stock-out penalties at each FOB. The first constraint limits our actions to utilizing

at most the total number of CUAVs available as dictated by the crew limitations

of CUAS. The second constraint limits the expected amount of supplies delivered to

be no greater than the FOB capacity. The third constraint penalizes our objective

function by the amount the system drops below the supply requirement (which causes

ground convoy resupply). The final constraint enforces our assumption that CUAVs

are only sent in integer numbers.

We develop ADP policies using our IP in our API-LSTD algorithm. We chose

the first order model excluding bilinear interaction terms because it both performed

better in preliminary testing and allows us to use a linear IP rather than non-linear

IP. The simpler inner maximization problem allows us to perform an experimental

design with more breadth in a reasonable amount of time.
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4.4 Experimental design

We created an experimental design to test the robustness of our design parameters

and find the parameter settings that allow our explored algorithmic approach to

achieve the best performance. We focused our response variable on the total number

of supplies delivered via CUAV in the system. The total number of supplies delivered

via CUAV is reported in tons. In each experimental run we simultaneously assess

four problem features and four algorithmic features. The four problem features of

interest were chosen based on what we thought might have the most effect on the

system performance. The four problem features we chose to investigate are number

of CUAVs initially in the system (U), number of crews available (K), probability of

staying in a low threat map (α), probability of staying in a high threat map (β). The

four algorithmic features we chose to experiment on are inner loop iteration count (Q),

outer loop iteration count (A), a categorical variable where −1 denotes API-LSTD

using Bellman’s error minimization and 1 denotes IVAPI, and another categorical

variable where 1 denotes using smoothing in the specified algorithm and −1 denotes

no soothing. We recorded the response variable over a three month simulation with

100 replications per treatment.

Each of the four problem features are considered to be continuous. We chose

the CUAV and crew level to be levels associated with deploying one, two, and three

TUAS platoons at the BSB. This is done under the assumption that as commanders

increasingly value CUAV resupply, TUAS platoons will be sent in greater numbers

to support the brigade operations. The transitions probabilities, α and β, are pa–

rameterized similar to earlier work by McKenna [21]. The lower value, 0.2, denotes

a low chance of transitioning to a different threat map condition. The upper bound

explored, 0.8, denotes a high probabilty of transitioning to a high threat map condi–

tion.
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Table 4. Factorial Design Settings

Description Factor Low Center High
Initial number of CUAVs U 4 8 12

Number of crews K 2 4 6
Probability of remaining low threat α 0.2 0.4 0.8
Probability of remaining high threat β 0.2 0.4 0.8

Number of inner loops Q 5000 20000 35000
Number of outer loops A 10 30 50

Using instrumenal variable IV -1 - 1
Smoothing SM -1 - 1

The four algorithmic features were also chosen to best explore the experimental

space. The inner loop count was set to a low of 5, 000 and a high of 35, 000 based

on initial testing. The center run is the midpoint of the upper and lower bounds

and allows us to check to see if our response variable demonstrates nonlinearity. The

outer loop iteration counter was similarly chosen allowing for a large upper bound

to achieve the most accurate value function approximation for the basis function

we chose. Table 4 shows the problem and algorithmic settings for our experimental

design.

We implemented a 28−2 resolution V fractional factorial design with three center

runs totaling 67 runs. In a resolution V design, all first- and second-order effects are

free from being aliased with other first- or second-order interactions. Second-order

interactions are, however, aliased with three factor interactions. Our ADP policy

utilizes the θ coefficients for the selected basis functions. After the θ coefficients are

calculated, we simulate the myopic and ADP policies to attain our response variable

statistics.

All treatments within the experiment are conduced in MATLAB R2015a calling

CPLEX to solve the inner maximization problem. The experimental design was run

on an Intel(R) Xeon(R) E3-1226 v3 3.30 GHz processor with 32.0 GB memory. The

time reported for computational effort is only the run time for the ADP algorithm;
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preprocessing operations and simulation times are not included. We conduct two

simulations per experimental treatment over 100 replications. These two simulations

account for determining the ADP policy and utilizing the myopic policy. Moreover,

we use the common random numbers variance reduction technique for both the ADP

algorithm and simulation.

4.5 Results

Tables 7 and 8 at the end of this section show the results from the experiment.

The ADP algorithm did not perform well compared to the myopic strategy overall

however there are instances where the ADP algorithm did perform well. The ADP

policy significantly outperformed the myopic policy when a high number of CUAVs

were deployed (at the 95% confidence level). The settings where our ADP algorithm

performed best are when CUAV number, crew number, inner loop count, and outer

loop count were at their high levels, both threat transition probabilities (probability

of staying in current map) were at their low levels, and smoothing was not used.

This treatment delivered on average of 85.6 more tons than the myopic policy. This

analysis provides indication of which variables are influential in the design structure

of this problem however a metamodel is necessary to draw direct conclusions.

We next created a regression metamodel to analyze the effects with more statistical

rigor. Using a factor screening method yields factors which produce a significant

relationship that passes the lack of fit test, however, the residual by predicted plot

exhibits a strong funnel pattern that may be problematic. This outward-opening

funnel pattern shown in Figure 1 implies the variance is an increasing function of the

response variable [23].

To overcome the unequal variance in our response variable, we perform a Box-–

Cox Y transformation test and find the logarithmic transformation is the best fit to

33



Figure 1. Residual by Predicted Plot Demonstrating Funnel Pattern

Table 5. Factors Influencing CUAV Resupply Amount

Variable Sum of Squares F Test % Contribution
U 25.355997 < .0001 93.76
β 0.610391 < .0001 2.26
α 0.539198 < .0001 1.99
Q 0.08314 0.012 0.28
U U 0.267186 < .0001 1.01

Q (SM) 0.067605 0.0228 0.25
(SM) K 0.060227 0.0312 0.24
β K (IV ) 0.057024 0.0359 0.21

reduce the sum of squared errors. After applying the logarithmic transformation and

performing an additional screening process, we again find a significant model that

passes the lack-of-fit test. After transformation, this model no longer exhibits the

same problems with the residuals. This model eliminates most of the second- and

third-order interactions and only leaves four first-order interaction terms significant.

Table 5 summarized the significant variables.

We consider variables within the 95% confidence interval significant. With this cri–

teria, number of CUAVs, probability of staying in a high threat condition, probability

of staying in a low treat condition, and inner loop count are all significant first-order

terms. Both smoothing and crew only become significant in the second-order terms
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Table 6. Coefficient Estimates

Variable Estimate Percentage Increase P-Value Lower 95% Upper 95%
U 0.629 87.65 < .0001 0.602 0.657
β -0.098 -9.30 < .0001 -0.125 -0.070
α 0.092 9.61 < .0001 0.064 0.120
Q 0.035 3.52 0.0154 0.007 0.062
U U -0.309 -26.57 < .0001 -0.440 -0.178

Q (SM) 0.033 3.30 0.0225 0.005 0.060
(SM) K 0.032 3.22 0.0259 0.004 0.059
β K (IV ) 0.029 2.99 0.0379 0.002 0.057

while using instrumental variables only shows significance as a third-order effect. One

area of note is that outer iteration count is the only effect that did not prove to be

significant in our testing or previous research done to date on this problem [21]. This

could be of significance because in future runs we could drop the outer iteration

count to 10 iterations without having deleterious effects on the performance of the

ADP policy in terms of tons of supplies delivered.

Using the values proved to be significant, we created a regression model. Table 6

provides the coefficient estimates of the significant terms, and the p-values for their

associated t-statistic. Because of the logarithmic transformation on our response

variable, we can no longer directly interpret our results; we can, however, interpret a

unit change in the independent variable as a percentage per unit increase by taking

any coefficient ω and performing the following operation, 100(eω − 1). These values

have been generated and added to Table 6 for ease of interpretation.

According to our model, the amount of supplies delivered is maximized with 12

CUAVs, probability of staying in a high threat map of 0.2, probability of staying in a

low threat map of 0.8, 35, 000 inner loops, no smoothing, 6 crews, and using IVAPI.

The fact that no smoothing appear significant indicates that the smoothing rule we

chose was a poor value for this problem structure. We suspect that choosing a better

smoothing rule will show the smoothing significant in future research.
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V. Conclusions and Recommendations

5.1 Conclusions

Management of cargo unmanned aerial vehicle (CUAV) assets for resupply is an

important issue to the United States military. Poorly developed transportation in–

frastructure, adverse weather conditions, terrain, enemy threat and actions, and the

availability of distribution assets all inhibit successful distribution of supplies from

the brigade support area (BSA) to the forward operating bases (FOBs). Moreover,

insurgent use of improvised explosive devices (IEDs) greatly affects truck mobility

throughout the operational environment and has been successful in disrupting re–

plenishment procedures [24]. Since 2012 when the K-MAX successfully deployed to

Afghanistan [13], CUAVs have been of increasing interest both to the United States

and worldwide [14]. This thesis provides insight into using cargo unmanned aerial ve–

hicles (CUAVs) in combat environments for resupply. High casualty rates for convoy

resupply mission has highlighted the importance of CUAV aerial resupply. CUAV

benefits include: better performance in adverse weather conditions, higher flight ceil–

ings, and no escort requirement restrictions. All these yield a lower probability of

vehicle destruction via man portable air defense systems (MANPADS) and small

arms fire. The most important benefit of CUAVs is their ability to save lives by

alleviating ground convoy resupply requirements. Although CUAVs do not yet have

the ability to completely handle FOB supply requirements, each successful CUAV

delivery means less men and women exposed to enemy threats to include IEDs.

We formulated an Markov decision process (MDP) of the military inventory rout–

ing problem (MILIRP). We expanded previous research by adding model realism to

include stochastic demand and a penalty function while developing the general model

to introduce supply classes. We utilized approximate dynamic programming (ADP)
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to determine approximate solutions. We tested our approach and obtained mixed

results.

Although our results are situationally better than the myopic policy, we cannot

conclude that our methodology properly captures the nuances of the problem struc–

ture. Ultimately this thesis shows utilizing least squares temporal differences with first

order terms is an insufficient basis function approximation technique to approximate

the value function when stochastic demand and penalty functions are implemented.

We suspect that the addition of the penalty function creates non-linearities in the

value function. It would be advantageous to increase the size of the basis function to

include bilinear interaction and nonlinear terms; this addition would require the inner

maximization problem to be solved using nonlinear integer solution techniques which

would increase the computational intensity of the problem. A better understanding

of how the penalty function affects the value function is necessary to model the value

function properly.

5.2 Future Research

There are a plethora of areas for future research into the military inventory routing

problem (MILIRP). The first way this research can be extended is to improve model

realism. This thesis did not consider time limiting restrictions that may be a necessary

consideration in combat conditions. Time windows for delivery and relaxing the direct

delivery constraints also could provide more model realism as well. Additionally, the

addition of supply classes would add model realism that has previously not been

researched. Multiple supply classes greatly increase the computational complexity

that the model must handle however it would be a great stride in modeling the

MILIRP.

Moreover, applying a greater variety of ADP algorithms to this problem would also
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be useful. This thesis examined policies generated from two different ADP algorithms.

Thus, applying additional ADP algorithms to obtain solutions to the MILIRP is

another avenue for future research.

Finally, additional research into special problem structure must be explored. A

theoretical result has yet to be proven to show how a penalty function affects the

value function. A greater understanding of the penalty induced value function can

allow for customized algorithms to better approximate the value function.
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Appendix A. Acronyms

ADP = approximate dynamic programming

BCT = brigade combat team

BSA = brigade supply area

BSB = brigade supply battalion

CUAV = cargo unmanned aerial vehicle

F = CUAV does not successfully deliver supplies

FOB = forward outpost

IED= improvised explosive device

IRP = inventory routing problem

IV = instrumental variables

MANPADS = man-portable air-defense system

MDP = Markov decision process

MILIRP = military inventory routing problem

SF = CUAV delivers supplies to COP, but does not successfully return

SIRP = stochastic inventory routing problem

SS = CUAV completes both legs of the journey

VMI = vendor managed inventory

VRP = vehicle routing problem
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